Name: \qquad

TAM 210/211 Written Assignment 4 (due on February 10 ${ }^{\text {th }}$)

The board is used to hold the end of a four-way lug wrench in position.
A torque $\mathbf{T}=-25 \mathbf{i}$ N.m is required to tighten the nut (note that the system of coordinates has the origin placed in the center of the wrench and the nut is located at position $<-100,0,0>\mathrm{mm}$). You decided to step at the end of the wrench in order to turn it. Assume that the force provided by your foot can be modeled as a concentrated force at point A with magnitude F. We also assume that the force vector \mathbf{F} lies in the vertical plane $y-z$ and makes an angle θ with the y-axis.
a) Determine the moment \mathbf{M}_{o} of the force \mathbf{F} about a point located at the nut. Write your answer as a function of F (force magnitude) and θ.
b) Does all of \mathbf{M}_{o} act to turn the nut? Explain.
c) Determine the magnitude of the force required to tighten the nut if $\theta=30^{\circ}$.
d) Which angle would require the least amount of force? What would be the corresponding magnitude of the force?
e) What is/are the benefit(s) from using a board to hold the end of a four-way lug wrench?
f) Suppose the goal was to now loosen one of the other nuts with a torque of $\mathbf{T}=\mathcal{T}$ i N.m while the max achieved by stepping on the wrench is $\pi \mathbf{i}$ N.m. What might you do in order to achieve the desired torque? Is there a term for the strategy you came up with? (Note: $\mathcal{T}=2 \pi$)

